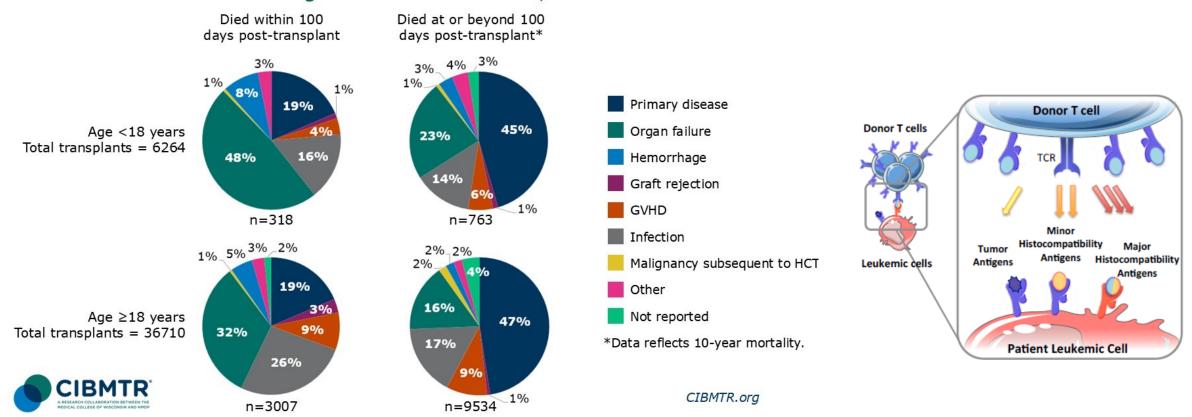


Terapia della malattia in recidiva ematologica

Patrizia Chiusolo
Università Cattolica del Sacro Cuore
Fondazione Policlinico Universitario Agostino Gemelli IRCCS
Roma


Disclosures of Patrizia Chiusolo

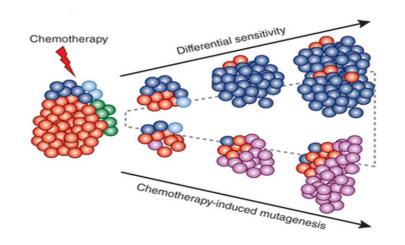
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie					х		
Therakos					X		
Astellas					х		
Novartis						х	
GSK					х		
MSD						х	
Takeda						x	
Sanofi			x				
Amgen						х	

Convegno Educazionale GITMO

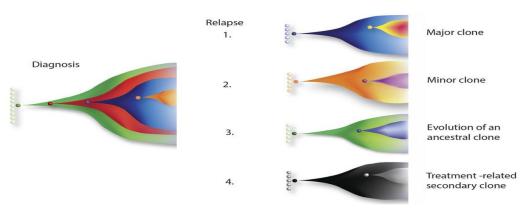
Causes of Death after Allogeneic HCTs in the US, 2019-2023

BACKGROUND

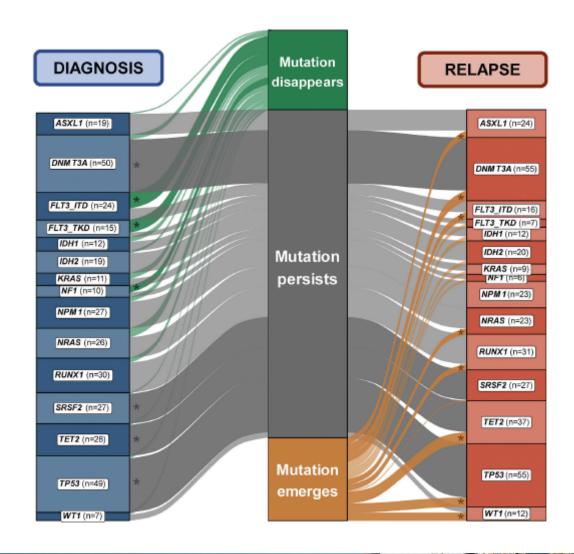
Allogeneic HSCT is the only potentially curative therapy for myeloid malignancies.
Disease relapse is the main cause of failure of allo-HCT, occurring in 30%–40% of patients who underwent transplant
There is no consensus regarding optimal salvage therapy for these patients.
Less than one-third of patients achieve remission after post-HSCT1 AML relapse.
1-year survival from relapse is approximately 25% with long-term survival of 10%.



Biology of relapse post AlloHSCT-1


- Multiple patient-, disease-, and transplant related factors implicated in an increased risk of relapse post allo-HCT:
 - Older age
 - High-risk cytogenetics
 - Presence of FLT3, TP53, WT1 mutations
 - Clone instability
 - Time from achieving remission to allo-HCT
 - Absence of GVHD
 - In-vivo T-cell depletion

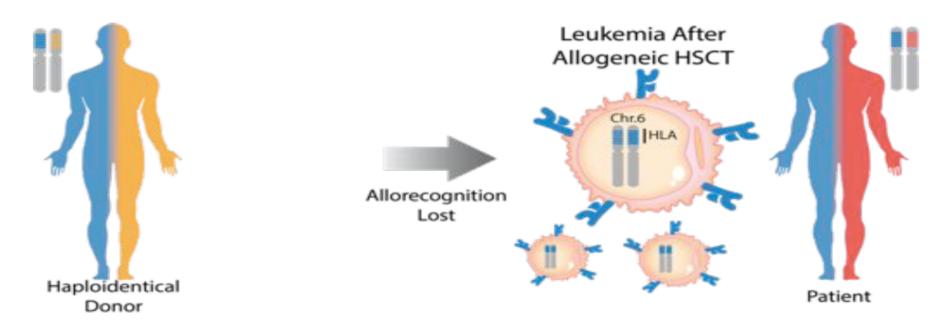
Leukemia is not a static condition Relapse after alloHCT is associated with acquisition of new variants



Repeating genomic analysis at relapse is necessary

Kleppe M, Levine RL. Nat Med. 2014;20(4):342-344.; Grimwade D, et al. Blood. 2016;127(1):29-41; Christopher et al. NEJM 2018

Mutation dynamics

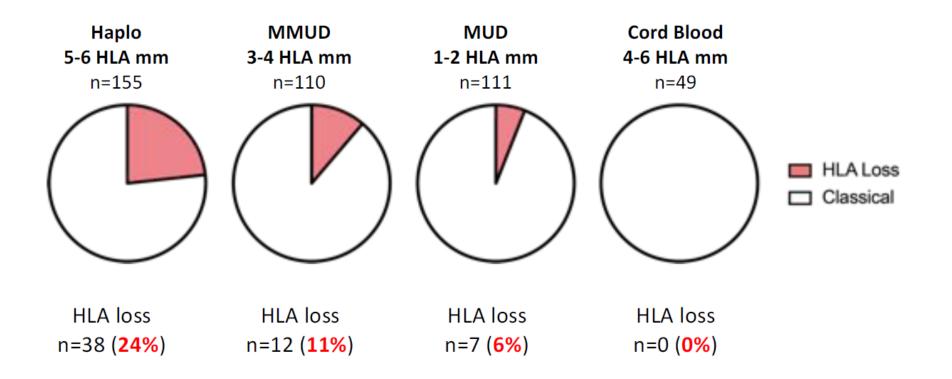


Bataller A et al. Haematologica 2024

Immune microenvironment involved

- Downregulation of MHC Class II genes
- Downregulation of NK cell targets
- Loss of expression of an HLA haplotype
- Increased expression of inhibitory checkpoint ligands

HLA loss


- Loss of the entire HLA complex (both class I and class II)
- Genomic mechanism (irreversible)
- Occurs only in leukemia cells, and rapidly becomes clonally prevalent
- Loss is counterbalanced by duplication of the other haplotype (expression level unchanged)

Vago L et al NEJM 2009 Crucitti L et al Leukemia 2015

HLA loss occurrence

Risk factors
Hyperleukocytosis at dx
Previous ALLO
Active disease at tx
PB
cGvHD

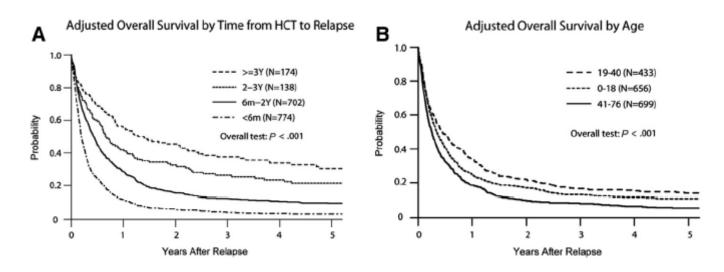
HLA loss relapses mostly occurred late after transplant (median 307 days, range 56–784) 'classical' occurred much earlier (median 88 days, range 12–579; P<0.0001).

Crucitti L et al Leukemia 2015

Treatment of relapse

Cell-base therapy:

- Donor lymphocyte infusion
- Second alloSCT

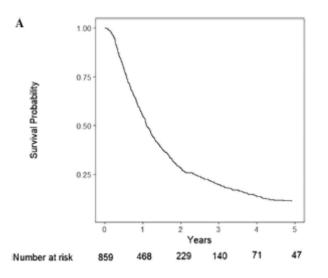

Pharmacologic-based Therapy:

- Standard CT
- HMA+Venetoclax
- Gilteritinib
- Menin Inhibitors
- IDH inhibitors

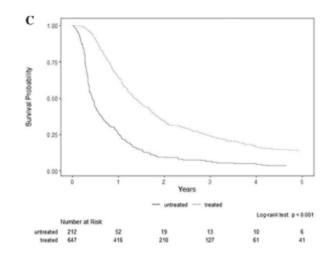
Survival of Patients with Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Cell Transplantation: A Center for International Blood and Marrow Transplant Research Study

1788 AML patients relapsing after alloHCT (1990 to 2010) during first or second complete remission (CR)

Time from	DII			Second HCT			
HCT to Relapse	n	Survival ≥1 Year after Relapse n (%)	P Value*	n	Survival ≥1 Year after Relapse n (%)	P Value*	
<6 mo	90	12 (13)	<.001	110	35 (32)	<.001	
6 mo-2 yr	81	28 (35)		167	92 (55)		
2-3 yr	14	7 (50)		37	23 (62)		
≥3 yr	17	10 (59)		55	32 (58)		
Median	7	13 (2-106)		12	14 (2-78)		
(range)	$(1-177)^{\dagger}$	-		(1-150)‡			


Survival for all patients was 23% at 1 year after relapse

Survival after DLI and Second HCT


N. Bejanyan et al. / Biol Blood Marrow Transplant 21 (2015) 454-459

Outcome of Patients With Acute Myeloid Leukemias or Myelodysplastic Syndromes After Relapsing From Allogeneic Stem Cell Transplantation: The GITMO AML/MDS-Relapse Registry Study

1-year OS = 55% 2-year OS = 28%

Treated: 1-year OS = 64%

2-year OS = 34%

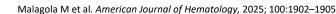
Untreated: 1-year OS = 25%

2-year OS = 10%

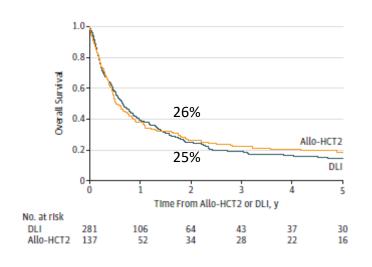
859 pts (2015-2021) 768 AML/91 MDS 507/859 (59%) received the transplant in first CR

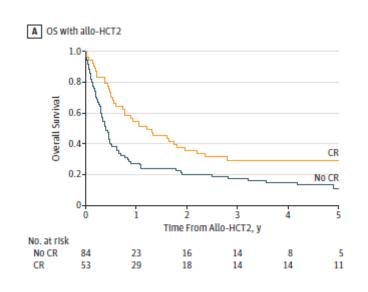
MVA

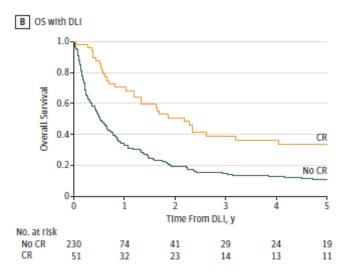
Increased risk of RM:


the age at transplant was the only factor independently associated with an increased risk (HR 1.01)

Reduced risk:


- -relapse occurring at least 12 months from transplant (HR 0.38)
- -disease relapsing with MRD positivity and/or molecular mixed chimerism (HR 0.47)
- -disease in CR at allo-SCT (HR 0.59)
- -post-relapse therapy based on HMA±venetoclax (HR 0.56)


Convegno Educazionale GITMO



A retrospective registry study from the ALWP of EBMT 418 adults who received an allo-HCT2 (n = 137) or DLI (n = 281) for postallograft-relapsed AML

Kharfan-Dabaja et al.. JAMA Oncol, 2018

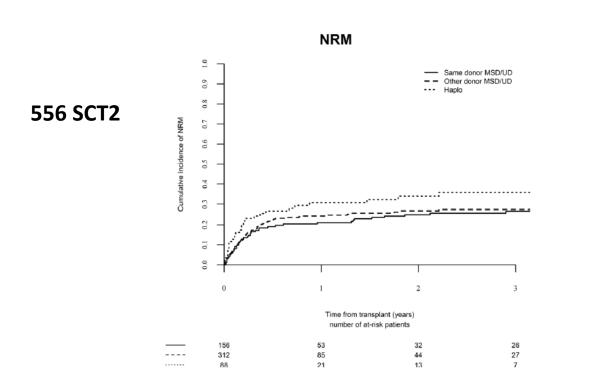
How risky is a second allogeneic stem cell transplantation?

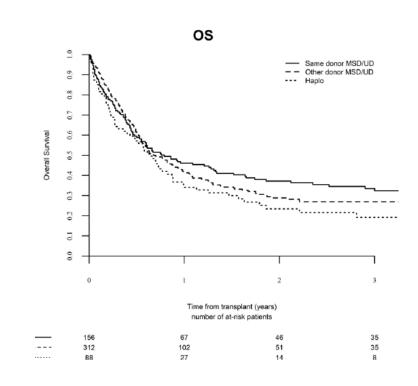
3356 second alloSCTs performed 2011–21

The current standard of care is to base second alloSCT decisions on the most important factors:

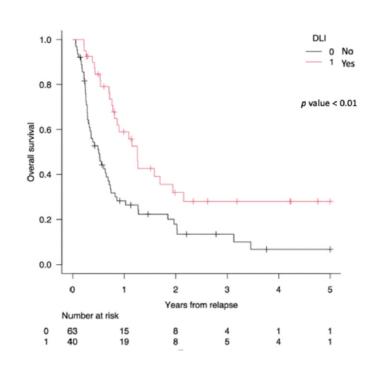
- extent and aggressiveness of relapsed disease, including the extramedullary involvement and presence cytogenetic/molecular risk factors;
- (b) patient's overall health, organ function, and ability to tolerate conditioning regimens;
- (c) the duration between the first transplant and relapse;
- (d) availability of suitable donors;
- (e) pre-existing comorbidities as well as prior transplant-related toxicities.

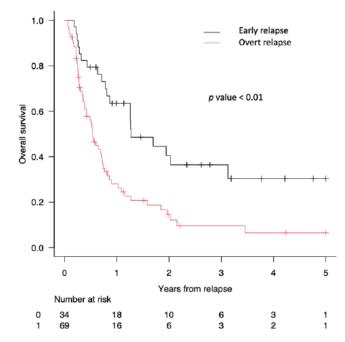
At 2 years after second alloSCT NRM 22%, relapse incidence 50%, overall survival 38%, and progression-free survival 28%.


Penack O et al Leukemia (2024) 38:1799-1807



Donor selection for a second allogeneic stem cell transplantation

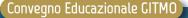



No better GVL with a second haplo-donor, and since a second haplo-identical transplant was associated with more NRM, outcome was inferior

Shimoni et al. Blood Cancer Journal (2019)9:88

Donor Lymphocyte Infusion in the Treatment of Post-Transplant Relapse of Acute Myeloid Leukemias and Myelodysplastic Syndromes Significantly Improves Overall Survival: A French-Italian Experience of 134 Patients

January 2015 to December 2021, a total of 553 AML/MDS


134 relapsed after allo-SCT (24.2%) and 103 (18.6%) were subsequently treated.

-overt relapse (69/103 patients—67%)

-early relapse, which included patients with molecular/cytogenetic relapse and/or with mixed chimerism (34/103 patients—33%).

New drugs such as HMA, venetoclax, or FLT3 inhibitors likely enable to reduce the leukemic burden and achieve remission, which can be further consolidated with subsequent DLI infusions.

Cancers 2024, 16, 1278

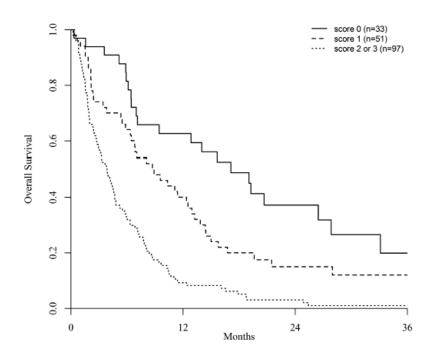
Conventional therapy

Authors	Regimens	Subsequent DLI/2nd Transplant	Relapse within 6 months of Prior Transplant	Median Age	N	% CR	ORR	os
Responses A	ssessed after Chemotherapy Alone							
Koren- Michowitz et al.	Ara-C + GO	25%/13%	81%	53 (31- 63)	16	31%	60%	25% at 1 year
Devillier et al.	HiDAC +/- GO +/- Anthracycline	8%/25%	42%	42	24	71%		33% at 1 year
Schmid et al.	Ara-C + Anthracycline +/-Other, HiDAC +/-Other, Anthracycline + Other	0%/0%	>50%#	56 (18- 76)#	47	27%		4.4% at 2 years
Sauer et al.	HiDAC +/- Anthracycline OR ICE	0%	>50% ^{\$}	52 (17- 73) ^{\$}	16	13%		34.4% at 1 year
Responses A	ssessed after Chemotherapy and DLI							
Motabi et al.	FLAG, FLAG-Ida, FLAG-IM, CLAG, CLAM, MEC, 7+3	56%/7%	58%	52 (18- 70)	73	40%	51%	32% at 1 year
Levine et al.*	7+3 (Dauno 30) or Other	100%/3%	55%	42 (2- 59)	65	42%		19% at 2 years
Sauer et al.	HiDAC +/- Anthracycline OR ICE	100%	>50% ^{\$}	52 (17- 73) ^{\$}	31	48%		29% at 1 year

^{*}Median age and time to relapse reflect the full cohort of 776 patients with post-transplant relapse. *Median age and time to relapse reflect the full cohort of 108 patients with post-transplant relapse. *Study includes 4 patients with CML and 11 with MDS.

Unsatisfactory median survival rates compared to NRM of 20%

Convegno Educazionale GITMO



Clinical activity of azacitidine

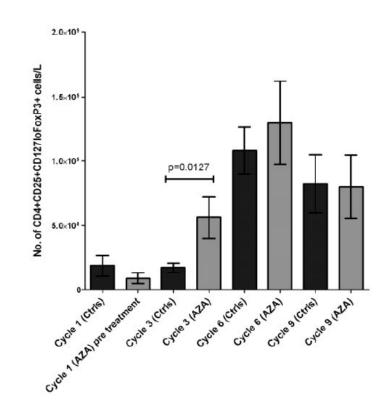
181 patients relapsed after alloHSC for AML (n=116) or MDS (n=65)

Factors determining 2-year OS after azacitidine treatment

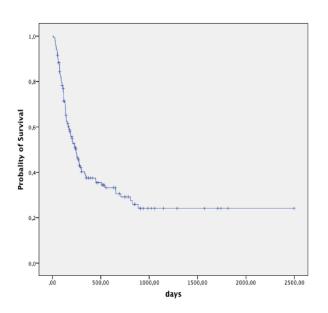
	P	HR	95% CI		
			inf	sup	
Interval SCT-relapse < 6	mo (Ref)		1.00		
6-12 mo <i>vs.</i> <6 mo	0.001	0.51	0.35	0.76	
>12 mo <i>vs.</i> <6 mo	<10-4	0.29	0.19	0.44	
Blasts in BM at relapse >median	0.012	1.53	1.10	2.14	

In patients who achieved CR, the 2-year overall survival was 48% *versus* 12% for the whole population The concurrent administration of DLI did not improve either response rates or OS

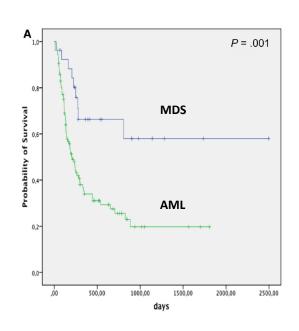
Craddock C et al. Haematologica 2016; 101(7):879-883

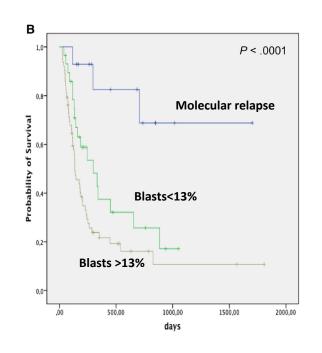


Aza augments a GVL effect without a concomitant increase in GVHD


Increased number of **Tregs** within the first 3 months after transplantation compared with a control population (P .0127).

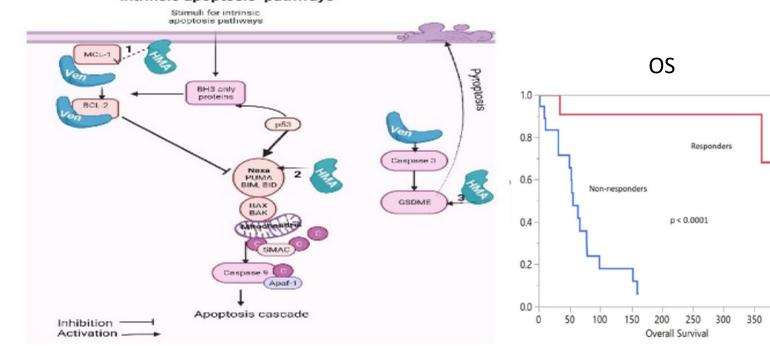
AZA induced a cytotoxic **CD8 T-cell response** to several tumor Ags, including WT1.

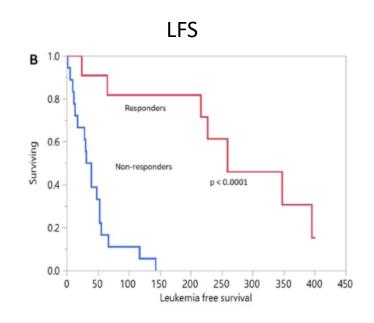



Goodyear OC et al. Blood 2012

HMA and **DLI**

OS was 29% (4%) at 2 years


Similar results with decitabine


Predictive factors of response (OS) were:
-type of relapse: mol vs hem
-primary diagnosis of MDS,
-lower leukemic burden in BM at relapse

T. Schroeder et al. / Biol Blood Marrow Transplant 21 (2015) 653e660

Salvage use of venetoclax-based therapy

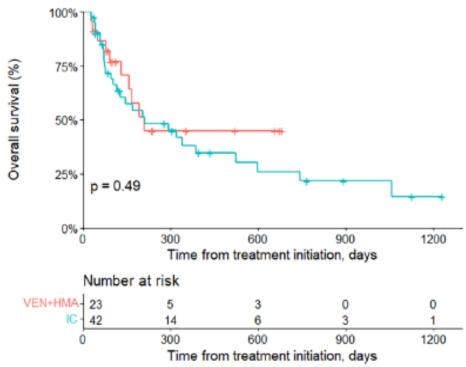
a: HMA augmenting Venetoclax mediated intrinsic apoptosis pathways

The overall response rate was 38% (n=11) with eight patients (28%) achieving complete remission (CR/CRi) and one a partial remission (PR) and two patients had a reduction in blast count.

Four of 12 patients (33%) with TP53 mutation responded, 3 achieved CR and one patient had PR.

Joshi et al. Blood Cancer Journal (2021) 11:49

HMA+VEN: setting post HSCT


Combination efficacy:

- Byrne et al. AJH 2020: 21 pts, first study on VEN post-HSCT
- Zhao et al. Ann Hematol 2022: VEN+AZA+DLI → ORR 53%, OS 14 mo
- Schuler et al. Ann Hematol 2021: german multicenter study, **ORR 30-50%**

.

Comparison with intensive chemoterapy:

- Chen et al. Front Oncol 2023: Similar OS with significantly less toxicity

Convegno Educazionale GITMO

Venetoclax plus hypomethylating agents as first salvage therapy for myeloid malignancies relapsing after allogeneic HSCT

Study Design:

Retrospective multicenter study

9 italian centers

Median F-U: 8 months

Period: 2022-2024

91 pts relapsed post-alloHSCT Inclusion criteria:

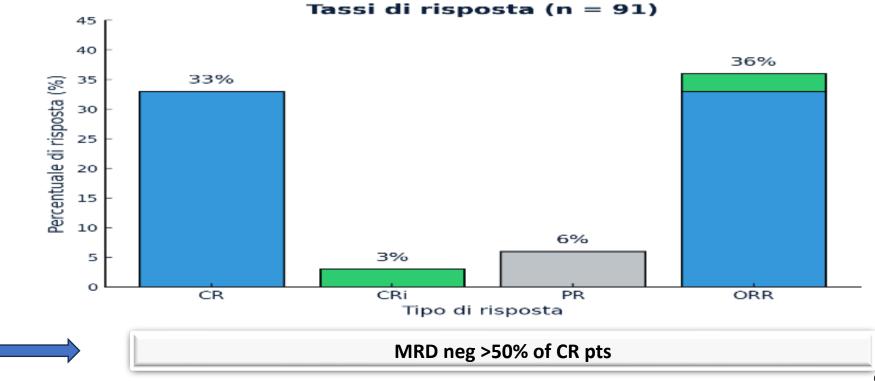
AML/MDS

>= 18 yo

First line treatment for relapse HMA-Venetoclax

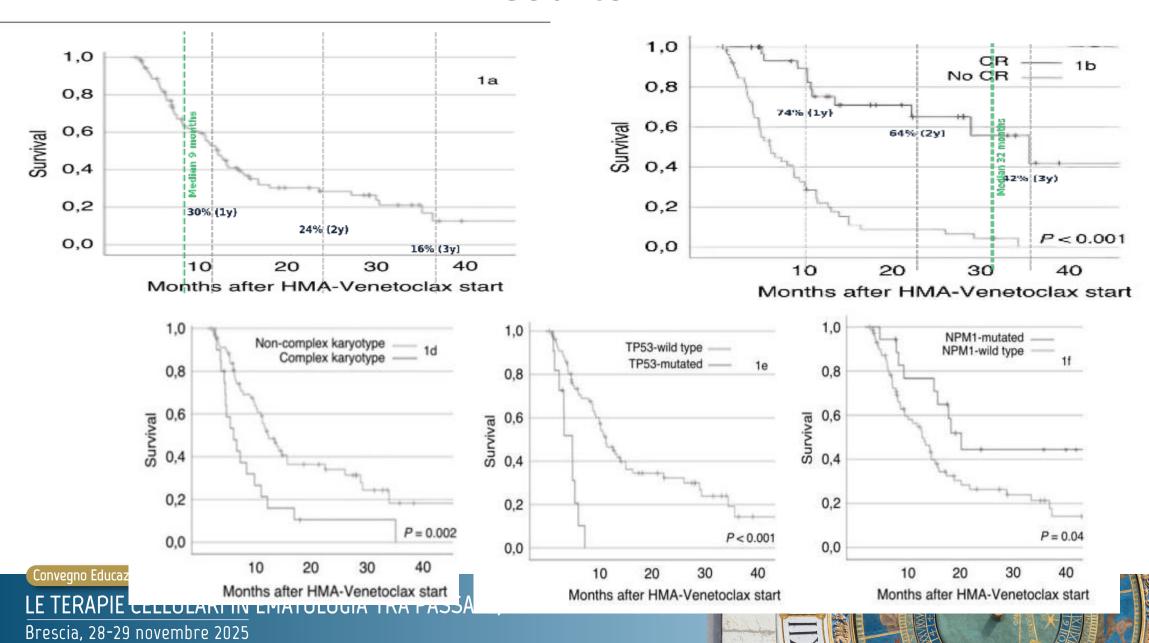
Parameter	Value
Total number of patients	91
Median follow-up (range)	8 months (1–34)
Sex (M/F)	50 / 41
Median age (range)	69 years (24–74)
Diagnosis	AML 83 (92%); MDS 7 (8%); CMML
	1 (1%)
High-risk disease	48 (52%)
Pre-HSCT MRD status	Negative 59 (64%); Positive 32
	(36%)
Conditioning regimen	MAC 22 (24%); RIC 69 (76%)
Donor type	MUD 38 (42%); MRD 18 (20%);
	Haplo 25 (27%); MMUD 9 (10%);
	Cord 1 (1%)
Stem cell source	PBSC 76 (84%); BM 14 (15%); Cord
	1 (1%)
GVHD prophylaxis	ATG 35 (38%); ptCY 56 (62%)
Incidence of aGVHD	41 (45%)
Grade of aGVHD	I 31 (34%); II 8 (9%); III 2 (2%)
Time to relapse (range)	14 months (2–137)

Chiusolo P, Malagola M et al. BMT 2025



Results: clinical response

Response evaluation:

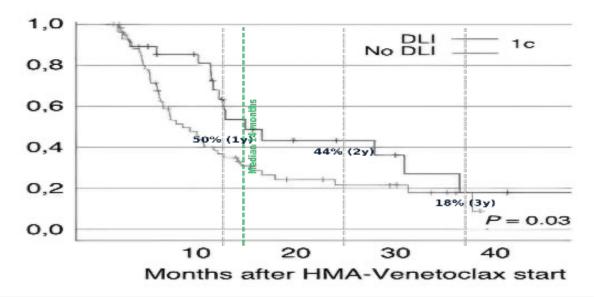

- ELN 2017/2022 Criteria (CR,CRi,PR,MLFS)
- MRD: qPCR or multiparametric Flow Cytometry
- Evaluation after 2 cycles, media cycles administered 4 (range 1-27)

Convegno Educazionale GITMO

Chiusolo P, Malagola M et al. BMT 2025

Results

Results: impact of DLI

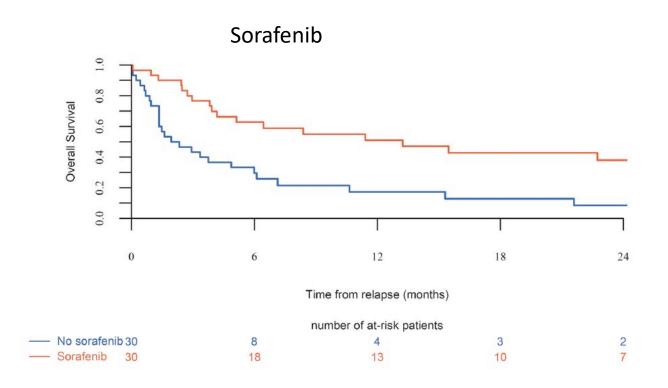

- 28 pts (31%) received DLI
- Median dose: 2x 10^6 CD3+/Kg (range 1-6)

IMPACT on OS:

mOS with DLI: 14 months vs 8 months

Safety profile:

- aGVHD: 25% (mostly grado I)
- No severe cGvHD



Sinergy between direct cytotoxicity (HMA-VEN) and adoptive immunotherapy (DLI)

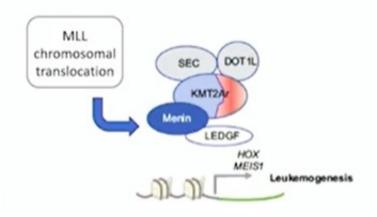
Chiusolo P, Malagola M et al. BMT 2025

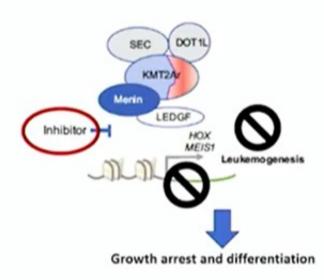
Tracking druggable mutations

FLT3

Gilteritinib

Parameter	Gilteritinib	Salvage Chemotherapy	
Median Overall Survival			Hazard Ratio (95% CI)
High-intensity chemotherapy	10.5 months	6.9 months	0.663 (0.471, 0.932)
Low-intensity chemotherapy	6.4 months	4.7 months	0.563 (0.378, 0.839)
Received prior HSCT	8.3 months	4.0 months	0.480 (0.274, 0.840)
Did not receive prior HSCT	9.6 months	6.0 months	0.684 (0.511, 0.917)
CP Pate no (%)			Risk Difference (%)
CR Rate, no. (%)			(95% CI)
High-intensity chemotherapy	37/149 (24.8)	12/75 (16.0)	8.8 (-3.0, 20.6)
Low-intensity chemotherapy	15/98 (15.3)	1/49 (2.0)	13.3 (3.6, 22.9)
Received prior HSCT	17/48 (35.4)	3/26 (11.5)	23.9 (2.6, 45.1)
Did not receive prior HSCT	35/199 (17.6)	10/98 (10.2)	7.4 (-1.4, 16.1)
Before on-study HSCT	34/247 (13.8)	13/124 (10.5)	3.3 (-4.0, 10.5)
CR/CRh Rate, no. (%)			Risk Difference (%)
CR/CKII Kate, II0. (%)			(95% CI)
Before on-study HSCT	65/247 (26.3)	19/124 (15.3)	10.9 (2.4, 19.5)


Pearl AE et alNEJM 381;18


Bazarbachi A et al. Haematologica 2019; 104:e399

Tracking druggable mutations

KMT2Ar and NPM1

Menin is an essential oncogenic cofactor for leukemogenesis driven by r-KMT2A

NPM1c mutated AML

HOX Meis1

Nenin Menin-i MLL

HOX Meis1

OFF OFF

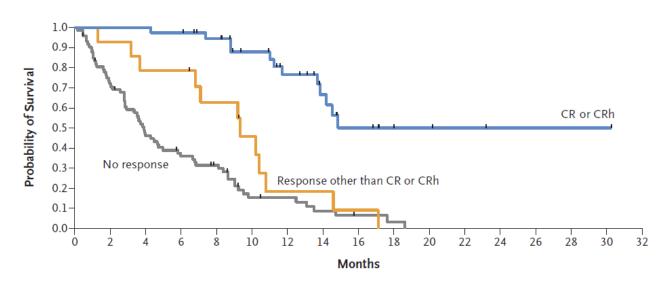
Differentiation

Ongoing trial in AML R/R:
Enzomenib
Ziftomenib

Uckelmann et al. Science 2020

Modified from Issa GC et al, Leukemia 2021

Convegno Educazionale GITMO



Tracking druggable mutations

IDH1/2

IVOSIDENIB in R/R AML

Overall Survival According to Response

Trials included a limited number of patients with relapse after transplant.

Few ongoing trials on IDH inhibitors for *IDH*-mutant AML patients relapsed following allo-HSCT.

Ideal agent for **maintenance** post-transplant.

Di Nardo CD et al N Engl J Med 2018;378:2386-98.

Cell-based therapy

Donor lymphocyte infusion

Most effective in certain conditions, including low tumor burden and loss of chimerism or MRD

√Favorable prognostic factors:

- •Use of an RIC/non-myeloablative conditioning regimen
- . Longer time from transplant to relapse

 $\sqrt{\text{Poor prognostic factors:}}$

- Age greater than 41 years
- Unfavorable karyotype
- Mismatched unrelated donor
- GVHD at time of relanse

Second hematopoietic stem cell transplant √Prospective trials needed to better describe their role

√Available data including patients who have survived until the intervention and who were younger than the majority of patients who relapse after the first

 $\sqrt{\text{Favorable prognostic factors:}}$

- •More than 6 months between the first transplant and relapse
- Matched related donor at the first transplant

Pharmacologic-based therapy

Isocitrate dehydrogenase (IDH) inhibi-

tors

Venetoclax

Hypomethylating agents

 $\sqrt{\text{Promising results in the setting of relapsed/refractory AML}}$

√Ongoing trials for IDH-mutant AML patients who relapsed following allo-HSCT

√Anti-leukemic activity through DNA hypomethylation

√Immune modulatory activity that enhances the activity of regulatory T cells and cytotoxic T cells

√Regulating GVHD while maintaining the beneficial GVL effect

 $\sqrt{\text{The optimal dose used is 32 mg/m2 for 5 days every 28 days}}$

 $\sqrt{\text{Role}}$ in targeting leukemia cells with an acceptable toxicity profile

 $\sqrt{\text{Venetoclax combination therapy: similar anti-leukemia effect yet a better toxicity profile than}$

FLAG-idarubicin

 $\sqrt{\text{Reduction and/or interruption of dosing may be warranted in some cases of neutropenia}$

FLT3 and menin inhibitors

Modified by Kreidieh F et al. International Journal of Hematology (2022) 116:330–340

Convegno Educazionale GITMO

Summary

- Treatment options for post-transplant relapse are often dictated by how 'fit' the patient is.
- Defining the molecular profile is essential; NGS should be considered for relapsed bone marrow specimens prior to initiation of salvage therapy.
- DLI remains a powerful example of adoptive immunotherapy and an established salvage and prophylactic option post-transplant.
- Prospective trials are needed to better describe the role of second allo-HSCT.
- Even in the context of post-transplant relapse with adverse mutations, VEN-based therapy is capable of inducing CR and improving survival in responding patients.
- A common challenge with VEN-based therapy is identifying the appropriate dose and cycle duration due to hematological toxicity.
- When applying data from available studies on R/R AML, caution should be used, especially with regard to the treatment received in the frontline setting and the residual toxicity.

